QUANTUM THEORY. ITS TYPE AND PROPERTIES & STRUCTURE.

Hii Friends I am Nisha, in the last post we had learn about What is chemistry? Its type and properties. And today we will learn about the Quantum theory.Its type and properties.

QUANTUM THEORY 


Also known as ⇨ Quantum theory
Based on  ⇨ Wave Function
Proposed by ⇨ Schrodinger 
Denoted by ⇨    Wave function (Ψ Sign).

Knowns about →
Characteristic feature of an atom 
Sence = Real arrangement of electron in an atom.

Real arrangement are knowns 
 (1) Orbit
(2) Name of Orbit.
(3) Orbital of an atom.
 (4)Sub-shell of an atom.
(5) Shape of sub-shell.
(6) Accouis  atom electron in orbit / Accouisdatirem electron
(7) Acsauodation of electron in sub shell  

Definition according to above →

This quantum number (a)
Orbit, sub-shell, shape of sub-shell, orbital, direction of electron is known as quantum theory.

Fact :-
Quantum theory is defined as →
(1) Knowns = Orbit of an atom 
(2) Sub-shell of an atom 
(3) Shape of sub - shell
(4) Orbital
(5) Direction of an electron

Conclusion to above :-
Name of quantum number
(1) Principal quantum number.
(2) Azimuthal quantum number.
(3) Magnetic quantum number.
(4)Spin Quantum number

(1) PRINCIPAL QUANTUM NUMBER 

Proposed by = niels bohr  
Knowns about =  (1) Orbit, (2) Name of orbit, (3) Accomodation  in orbit number of electron.

Definition 


The quantum number which give the idea about orbit, name of orbit and number of electron in orbit or accomodation of in orbit is called Principle quantum number.

Fact :-
Principle quantum number is defined as →
(1) Knowns about = Orbit
(2)  Knowns about = Name of orbit
(3) Knowns about = Accounodation or number of electron in a orbit
(4) All ✅

(a) Orbit  

This is fixed path in which the electron are rotate is called orbit

Fact:- 
        Orbit is defined as →
(1) It is fixed path 
(2) It is Certain path 
(3) This is defined path
(4) All ✅

Denoted by = (n) 

⇒ It having numbered 
that is  n = 1,2,3,4,5,6,7.....

(b) Name of orbit  

Example :-
Number of Orbit            Name of Orbit
 n = 1                        K - Orbit
n = 2                       L - Orbit
 n = 3                       M - Orbit
n = 4                      N - Orbit
 n = 5                       O - Orbit
 n = 6                        P - Orbit
 n = 7                       Q - Orbit
.....                            .....   
n = ( Infinity )                = Orbit

(c) Accomodation of electron 

Based on = 2n2 

Conclusion :- 
Accomodation of electron 

Example :- 
Number of Orbit   Name of Orbit    Accomodation of electron 
 n = 1                        K - Orbit                              2x(1)2 =  2
n = 2                      L - Orbit                              2x(2)2 = 8
 n = 3                        M - Orbit                          2x(3)2 = 18
n = 4                       N - Orbit                          2x(4)2 = 32
 n = 5                     O - Orbit                         2x(5)2 = 50
 n = 6                     P - Orbit                           2x(6)2 = 72
 n = 7                      Q - Orbit                        2x(7)2 = 98
.....                           ........                                   .....  
 n = ( Infinity )                   = Orbit                              



(B) AZIMUTHAL QUANTUM NUMBER 


Also known as =  (1) Subsidiary quantum number  
                          (2) Secondary quantum number
                            (3) Angular quantum number

Proposed by = Summer field 
Based on  = Principle quantum number
Denoted by = l

Knowns about →
(1) Sub-shell
(2) Name of the Sub-shell
(3) Accomodation of electron in a Sub-shell
(4) Shape of Sub-shell

Definition according to above 

This quantum number which given idea about Sub-shell, name of Sub-shell,  accomodation of electron in a Sub-shell and Shape of Sub-shell is called azimuthal quantum number.


(1) Sub-shell


There is probability to finding of electron/es is called Sub-shell & sub - orbit/Shell.

Fact :- 
         Sub-shell is defined as →
(1)  Maximum probability to finding to electron. ✅
(2) Maximum & maximum probability to finding to electron
(3) This probability
(4) All

(2) Name of the Sub-shell


It is depend upon = Azimuthal values 
Value of Azimuthal ⇨ L = 0,  l = 1, l = 2, l = 3.

Finding of azimuthal value (n - 1)
Where n = Number of orbit

Example : - 
(1) If n = 1
Formula = (n - 1) = 1 - 1 = 0
So, l = o

(2) If n = 2
Formula = (n - 1) = 2-1 = 1
So, l = 1

(3) If n = 3
Formula = (n - 1) = 3 - 1 = 2
So, l = 2

(4) If n = 4
Formula = (n - 1) = 4-1 = 3
So, l = 3

(5) If n = 5
Formula = (n - 1) = 5-1 = 4
So,
l = o, 1, 2, 3, 4


Azimuthal values     Name of the Sub-shell
l = 0                s - sub-shell
l = 1                 p - sub-shell
l = 2                d - sub-shell
l = 3                  f - sub-shell

Name of orbit   Azimuthal values     Name of the Sub-shell
n = 1                l = o                         s - sub-shell
 n = 2                 l = 1                        p - sub-shell
 n = 3                 l = 2                        d - sub-shell
 n = 4                  l = 3                        f - sub-shell

(3) Accomodation of electron in a Sub-shell


Formula : - 
  Accomodation of electron in a Sub-shell = xl+2
Where l = Azimuthal values 

   Azimuthal values   Name of the Sub-shell   Accomodation
                                                                     of electron
                l = o            s - sub-shell                  4x0+2=2 (1-2)


                  l = 1           p - sub-shell                4x1+2 = 6 (1-6)

                 l = 2           d - sub-shell               4x2+2=10 (1-10)

              l = 3             f - sub-shell             4x3+2=14 (1-14)




(4) Shape of Sub-shell

(1) In case of s - sub-shell
Shape = Spherical   (Ο)

(2) In case of p - sub-shell
 ⇨ Double = (1)  ∞  (2)


(3) 8

(3) In case of d - sub-shell
Shape = Double dumble


(4) In case of f - sub-shell
Shape = Complicated


(C) MAGNETIC QUANTUM NUMBER

Proposed by = P. lanble 
Denoted by = m1
Based on = Azimuthal quantum number or  m = l

Knowns about = (1) Orbital       (2) Name of Orbital    (3) Number of Orbital.

Definition according to above

This quantum number which gives the idea about orbital, Name of Orbital, Number of Orbital is known as Magnetic quantum number.

Fact : -
           Magnetic quantum number is defined as →
(1) Knowns about = Orbital
(2) Knowns about =  Number of Orbital
(3) Knowns about = Name of Orbital
(4) All ✅

It Started from =  +1, o, -1
or
-1, 0, +1 
 ( It Is Value of  Magnetic quantum number)

(1) Orbital


There is a maximum and maximum probability to finding of electron is called orbital.

Fact : -
            Orbital is defined as →
(1) finding of electron = Maximum probability 
(2) finding of electron= Maximum & maximum probability ✅
(3)finding of electron = Less
(4) All

Different between orbit & orbital

                  ORBIT       
        
(a) There is less and less probability to finding of electron  
(b) Perpus - (a) The unstable an atom required stability 
(b) Do not take part in combination
(c)  Do not honding    
(d) It do not forms molecule, molecular compound & compound

ORBITAL

(a) There is maximum and maximum probability to finding of electron  
(b) Perpus - (a) The unstable an atom required stability 
(b) To take part in a combination
(c)  It forms honding 
   (d) It forms molecule, molecular compound & compound

(2) Name of Orbital

Formula : - 
      Name of orbital = 2l+1
      Where l = Azimuthal values

Example : - 
Azimuthal values  Name of sub-shell Number of orbital = 2l+1
l = 0             s - sub-shell                    2x0+1=1


l = 1             p - sub-shell                   2x1+1=3

  l = 2            d - sub-shell                    2x2+1=5  

l = 3             f - sub-shell                    2x3+1=7

 s - sub-shell = 1 Orbital
 p - sub-shel = 3 Orbital
d - sub-shell = 5 Orbital
 f - sub-shell = 7 Orbital 


(3) Number of Orbital


Example : - 
              (a)  (1)  If  n = 1 
                             l = 0
                               m = 1 or  0

(2) Name of sub-shell = s - sub-shell
(3) Orbital dygram =
(4) Name of orbital = No name

(b) If n = 2 
       l = 1
m = -1, 0, +1
(1) Name of sub-shell = p- sub-shell
(2) Name of orbital = px,   py,   pz

(c) If n = 3 
         l = 2 
    m = -2, -1, 0, +1, +2

(1) Name of sub-shell = d- sub-shell
(2) Name of orbital = dxy,   dyn,   dzn,   dn2y2,   dz2

(3) Orbital dygram = |dxy|dyx|dzx|dn2y2|dz2| 

(d) If n = 4
       l = 3
 m = +3, -2, -1, 0, 1, 2, 3

(1) Name of sub-shell = f- sub-shell
(2) Name of orbital = Complicated
(3) Orbital dygram = ⬜⬜⬜⬜⬜⬜⬜ or  



(D) SPIN QUANTUM NUMBER 


Proposed by = Uhlen peck & Goudsmit
Denoted by = 


Knowns about = Directional of electron 

Definition 

On the basis of spectral evidence the electron are rotated      ( that is .... in a rotational form) in a two directional such as clock wise by (positive half ) & antic clock wise ( negative half) so, this quantum known as spin quantum number.

By the spin quantum number we known about →
(1) Direction of electron ✅
(2) Orbit of an atom
(3) electron sub-shell an atom
(4) electron  orbital of an atom

If having two values = +1/2,    -1/2    or 
                                     +1/2 

Alert :- 
If do not depends upon any quantum number
 ⇩
n = 1                   n=1 
 l = 0                   l = 0 
m = l                    m = l
  s = +1/2                  s = - 1/2  
Clock wise direction            Anti wise direction

Final conclusion to all quantum number

By the principle quantum number we know about = Orbit


By the Azimuthal quantum number we know about = Sub-shell

By the Magnetic quantum number we know about = Orbital

By the Spin quantum number we know about = direction of electron




Also read this



WHAT IS ORGANIC CHEMISTRY? AND ITS TYPE || DEFINE ORGANIC CHEMISTRY.

ACYCLIC OF ALKENE & HOMOLOGOUS - SERIES


WHAT IS FUNGI ? || DIFINE FUNGI || TYPES OF FUNGI ||




Share on Google Plus

About Study support

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.
    Blogger Comment
    Facebook Comment

0 comments:

Post a Comment